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OPERATING PROBLEMS OF THE SUPERSONIC TRANSPORT I N  

THE AIR TRAFFIC CONTROL SYSTEM 

By Michael C .  Fischer 

INTRODUCTION 

I n  order t o  study the problems anticipated with the  integration of the  

supersonic transport (SST) in to  the a i r  t r a f f i c  control system (ATC), a cooper- 

a t ive  research program between the National Aeronautics and Space Administration 

(NASA) and t h e  Federal Aviation Agency (FAA) has been in i t i a t ed .  

The objectives of the  program a re  (1) t o  determine the effects  of t he  a i r  

t r a f f i c  control system on the supersonic transport design and equipment require- 

ments and (2 )  t o  determine the e f fec ts  of the supersonic transport on the  a i r  

t r a f f i c  control system requirements. 

In  t h i s  paper, resu l t s  a re  presented of studies of navigational and oper- 

a t iona l  problems i n  terminal-area operations f o r  two SST design configurations 

operating i n  the present-day airways system under current ATC procedures. 

Results from a preliminary study of the use of a p i c t o r i a l  navigation display 

i n  connection with p i c t o r i a l  navigation routes a r e  a l so  given. 

EQUIPMENT 

A block diagram of the f a c i l i t i e s  involved i n  the  program i s  shown i n  f ig -  

The blocks on the l e f t  represent the equipment a t  NASA Langley Research ure 1. 

Center and those on the  r igh t  represent the equipment a t  the  National Aviation 

F a c i l i t i e s  Experimental Center (NAFEC) i n  Atlantic City, New Jersey. 

transport  simulation a t  NASA's Langley Research Center i s  accomplished by the  

use of a fixed-base SST simulator and an analog computer f a c i l i t y .  

Supersonic 

An in t e r io r  



view of the 

i s  provided 

ment ranges 

SST simulator's f l i g h t  compartment i s  shown i n  figure 2. Seating 

similar t o  tha t  of current j e t  transport  a i r c r a f t ,  with the  ins t ru-  

modified for  t h e  higher a l t i t ude  and Mach number operation of the  

SST. 

degree-of-freedom equations of motion fo r  an a i r c r a f t  having the design char- 

ac t e r i s t i c s  of the  SST under study. 

Figure 3 shows the analog computers which are  programed t o  solve the s ix-  

A i r  t r a f f i c  control simulation a t  NAFEC i s  accomplished by the use of a i r  

Figure 4 shows the a i r  t r a f f i c  

Approximately 30 experienced control lers  a re  

t r a f f i c  controllers and an a i r  t r a f f i c  sample. 

control ler ' s  f a c i l i t y  simulator. 

used and are equipped with a modern TV-type radar display. 

sample i s  simulated by the  use of radar ta rge t  generators, a s  shown i n  figure 5 .  

By turning knobs and manipulating levers,  the operator can maneuver the simu- 

la ted  a i r c ra f t  along the airway routes according t o  a predetermined schedule 

and instructions from ATC. 

turbine-powered subsonic transports a re  simulated. 

An a i r  t r a f f i c  

A mixture of supersonic transports and piston- and 

A s  indicated i n  f igure 1, radar posit ion information (and when requested, 

beacon transponder a i r c r a f t  ident i ty)  from NASA's SST simulator i s  transmitted 

t o  NAFEC over leased telephone l ines .  

SST simulator appears as  a b l ip  on the cont ro l le r ' s  radar scope along with sig- 

nals  from the  target generators. 

simulator p i lo t s  and the a i r  t r a f f i c  control lers  are a l so  carr ied over leased 

telephone l ines.  

air-to-ground and ground-to-air communications. 

This posit ion information from NASA's 

Simulated VHF communications between the SST 

A dual channel tape recorder i s  provided f o r  recording a l l  

For the l a t e s t  se r ies  of t e s t s ,  a p i c t o r i a l  navigation display was included 

a s  an operational cockpit instrument. 

seen i n  figure 6. 

A view of the p i c t o r i a l  display can be 

This i s  a moving-map display with the a i r c r a f t  symbol fixed 
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i n  posit ion i n  the center of the screen. The airplane symbol and attached 

cursor ro ta te  a s  the airplane i n i t i a t e s  a heading change, and heading cursor 

information i s  depicted a t  the edge of the  screen. The map remains north- 

oriented a t  a l l  times. 

5 inches by 7 inches. 

(10 n. m i .  per inch) and terminal ( 5  n. m i .  per inch) maps which depicted only 

basic airway, navigation, and ATC information. 

Physical s ize  of the display projection screen i s  

The p i c t o r i a l  display provided f o r  selection of en route 

TEST PROGRAM 

The t e s t s  consisted of simulated a r r iva ls  and departures under instrument 

f l i g h t  ru l e  (IFR) conditions i n  the New York terminal area during present-day 

peak-tra'ffic conditions. 

flown i n  the t e s t s  a r e  shown i n  figures 7, 8, and 9.  

with the p i c t o r i a l  display were designed t o  lay  over and pa ra l l e l  t o  t he  

established domestic departure and a r r i v a l  j e t  routes. The simulation was con- 

ducted i n  real-time u t i l i z i n g  a mixed-traffic sample including SST a i r c r a f t ,  

one of which was the SST simulator. A l l  t r a f f i c  was under posit ive control of 

the New York Air Route Traffic Control Center, adjacent centers, and Kennedy 

departure, a r r iva l ,  and tower f a c i l i t i e s .  Two SST a i r c r a f t  design configura- 

t ions  were simulated. 

configuration B was a fixed delta-wing design. 

f igurations and do not necessarily represent the character is t ics  of SST config- 

urations i n  the national program. 

Oceanic and domestic departure and a r r i v a l  routes 

Routes used i n  the tests 

Configuration A was a variable-sweep wing design and 

These a re  generalized SST con- 
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Climb and Descent Prof i les  

The climb and descent prof i les ,  as  well as  some operational l imitat ions 

for configuration A a re  shown i n  figure 10. The engine and s t ruc tura l  l imita- 

t ions  define a corridor through which the SST must operate. 

i n i t i a l  acceleration, the SST climbs a t  an airspeed of 360 knots u n t i l  the  sonic 

boom boundary of 2.0 pounds-per-square-foot i s  reached. 

attained, ascent i s  then continued a t  t h i s  airspeed u n t i l  cruise conditions a re  

reached. For descent, deceleration begins a t  cruise a l t i t ude  u n t i l  an indi-  

cated airspeed of 340 knots i s  reached and i s  held constant down t o  50,000 f e e t  

where level off i s  in i t i a t ed .  A t  a Mach number of 0.9, a l t i t ude  again decreases 

as descent i s  made a t  t h i s  Mach number u n t i l  an indicated airspeed of about 

340 h o t s  i s  reached again which i s  held constant u n t i l  terminal approach speeds 

a re  necessary. The climb and descent prof i les  for  configuration B a re  shown i n  

figure 11 and are  seen t o  be similar t o  configuration A except t ha t  indicated 

airspeeds of 325 knots and 500 knots a re  held constant on the ascent. The 

descent prof i le  d i f fe rs  from configuration A i n  tha t  an indicated airspeed of 

300 h o t s  w a s  followed and there  was no l eve l  off a t  50,000 f ee t  a l t i t ude .  

After take-off and 

When 570 knots i s  

RESULTS 

Vert ical  Fl ight  Path Control 

I n  following the sonic boom boundary region of the  climb prof i le ,  f i g -  

ures 10 and 11, the p i lo t s  experienced d i f f i cu l ty  i n  remaining close t o  the  

scheduled prof i le .  

cated airspeed, and r a t e  of climb are  a l l  varying so tha t  the p i l o t  has no 

constant instrument indication t o  monitor. To reduce the deviations from the 

scheduled prof i le  and t o  ease the p i l o t ' s  t a sk  considerably, a f l i g h t  director  

This i s  because i n  t h i s  region a l t i t ude ,  Mach number, indi-  
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was programed f o r  the p i l o t s  t o  use along t h i s  section of the prof i le .  

ure 12 shows tha t  the  magnitude of the deviations from the desired path without 

a f l ight  director  a re  of the order of 1,000 f ee t .  

director the deviations were reduced t o  about ?3OO f ee t .  

Fig- 

However, with the f l i g h t  

SST Navigation 

The resu l t s  of the t e s t s  along the  oceanic departure and a r r iva l  routes, 

f igures 7 and 8, indicated that routes fo r  the SST should be designed t o  avoid 

turns a t  supersonic speeds. 

supersonic turn a t  Nantucket Island. 

Nantucket i s  shown. 

a t  a speed of M = 2 

the  turn was not i n i t i a t e d  until  over Nantucket. This large overshoot occurs 

because the radius of tu rn  a t  a given bank angle increases as  the square of 

the speed. 

subsonic je t  transport  a t  cruise speed. 

in te r fe res  with departing SST t r a f f i c ,  thus creating a need for  increased 

separation. 

in formt ion  which enabled them t o  i n i t i a t e  t h e i r  supersonic turns a t  a given 

lead (IME) distance from the s ta t ion.  

on the method given i n  reference 1. 

shown i n  figure 13. 

one course t o  the next i s  made. However, any turn a t  supersonic speeds has 

the  adverse effect  of i n t e n s i o i n g  the sonic boom. 

from 2 t o  4 have been recorded i n  t e s t s  using fighter-type a i r c ra f t  (ref.  2 ) .  

It was determined from the  oceanic departure routes that t u r n s  a t  transonic 

For example, oceanic a r r iva l s  t o  J F K  required a 

In  figure 13, the  airway structure a t  

For the a r r iva l  from South Bangor, a 45' heading change 

resulted i n  a large overshoot of the desired course when 

The turn radius a t  M = 2 i s  about s ix  times greater than tha t  of 

The excursion past  the intersect ion 

To avoid these overshoots, the p i l o t s  were given lead distance 

The lead distance information was based 

An example of a lead t u r n  a t  Nantucket i s  

When lead information i s  used, a smooth t rans i t ion  from 

Amplification factors  of 
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speeds are also undesirable because of l o s s  i n  climb-accelerate performance 

a t  the  time of minimum performance capabili ty,  i n  addition t o  sonic boom 

focusing. The requirement f o r  turns  a t  supersonic speeds can be eliminated 

by allowing area navigation of the SST a t  a l t i tudes  above about 40,000 f ee t  

where the SST i s  supersonic. 

SST could operate i n  the present airway system. 

oceanic departure routes proved it would be advantageous, when planning f'uture 

departure routes, t o  provide s t ra ight  acceleration tracks from 100 t o  170 n. m i .  

long s ta r t ing  a s  close a s  possible t o  the a i rpor t .  

Below about 40,000 fee t ,  a t  subsonic speeds, the 

Experience gained from these 

It was determined from i n i t i a l  t e s t  runs along the  domestic departure 

routes ( f ig .  9) t ha t  the  SST would be a t  transonic speeds a t  the  turn by Coyle 

(CYN) on the  standard instrument departure. 

south of the  standard route were then developed t o  a l ine  the SST with s t ra ight  

portions of routes beyond Coyle as  soon as  possible fo r  acceleration t o  super- 

sonic speeds. 

This procedure eliminated the turns  a t  supersonic speeds and thus prevented 

l o s s  i n  climb-accelerate capabili ty.  This procedure would a l so  prevent sonic 

boom focusing under actual  f l i g h t  conditions. 

Two experimental routes shown 

The SST was thro t t led  back t o  remain subsonic u n t i l  alined. 

Maneuver Time 

The maneuver time required f o r  departures and a r r iva l s  f o r  a number of 

t e s t  runs i s  shown i n  figure 14  i n  bar graph form. 

time, i s  defined as  the time difference between a s t ra ight  unrestr ic ted climb- 

out and a climbout i n  which the SST operates i n  the ATC system and ( a )  follows 

airways, (b) is  radar vectored by ATC, and ( c )  obeys ATC a l t i t ude  r e s t r i c t ions .  

The dotted l i n e  represents the  SST design ground rule specified i n  the National 

The ordinate, maneuver 
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supersonic transport  development program which provides fo r  5 minutes opera- 

t i on  a t  250 h o t s  and 5,000 f ee t  a l t i t ude  as maneuver time allowance. For an 

a i r c r a f t  of the w e i g h t  of the SST, the A i r  Transport Association (Am) method 

of determining d i rec t  operating costs fo r  a subsonic jet would provide 10 min- 

u tes  maneuver time, and i s  shown by the  sol id  l ine .  

t o  maximum values f o r  the tests are  represented by the area of shading. 

t o  insuff ic ient  data, no bar graph appears fo r  the oceanic experimental depar- 

ture route. 

The ranges from minimum 

Due 

It can be seen tha t  the maneuver times along the domestic departure routes 

a re  considerably greater than fo r  the  oceanic routes. 

the f ac t  t h a t ,  fo r  a domestic departure, a considerable amount of eastward 

f lying is  required before westward headings can be flown. 

can a l so  be seen tha t ,  fo r  the majority of t he  domestic departures, the maneuver 

time used exceeded the SST ground rule .  

age maneuver time i s  somewhat higher than the average for  the runs made on the  

present-day routes. 

sonic u n t i l  turns could be completed onto s t ra ight- l ine portions of airway 

routes f o r  the transonic acceleration phase. 

This i s  mainly due t o  

From the figure it 

For the experimental routes, the aver- 

This r e su l t  shows the penalty incurred by remaining sub- 

Comparison of the a r r i v a l  maneuver t i m e s  indicates tha t  the times were 

greater f o r  the  domestic routes than f o r  the oceanic routes. One main factor  

governing t h i s  r e su l t  i s  the runways used and the radar vectoring received i n  

f i n a l  approach t o  these runways. 

Neck and Deer Park with holding times up t o  14 minutes. 

not included i n  the maneuver times. 

On occasion, holds were required a t  Colts 

These holding times a re  
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Maneuver Fuel 

Figure 15 shows maneuver f u e l  used as  a percent of mission fue l  fo r  the 

same t e s t s .  Maneuver fue l  i s  defined a s  the additional f u e l  used by the SST 

i n  operating i n  the ATC system compared with an unrestricted climbout. 

domestic and oceanic present-day departure routes, the average maneuver f u e l  

used was about the same, with the majority of the runs exceeding the maneuver 

f u e l  specified by the SST design ground rule .  The average maneuver f u e l  used 

was about 1 percent higher than t h a t  specified by the ground rule .  Fuel used 

on a l l  of the experimental departure route t e s t  runs exceeded the amount speci- 

f i e d  by the SST design ground ru le  due t o  the added time spent a t  subsonic 

For the 

I 

speeds. 

higher than tha t  specified by the ground rule .  

I n  t h i s  case, the average maneuver fue l  used was more than 2 percent 

I For the  a r r iva ls ,  a greater percent of mission f i e 1  was used on the  average 

on the domestic routes compared t o  the oceanic routes. This r e su l t  would be 

expected due t o  the greater maneuver time fo r  domestic a r r iva l s  as  shown i n  

figure 14. 

a r r iva l s ,  t h i s  would necessitate including t h i s  maneuver f'uel i n  the  reserve 

fue l .  

I 

I 

Since there i s  no specified allowance f o r  maneuver fue l  during 

Communications-Navigation Workload 

Figure 16 gives a comparison of the communication-navigation workload 

between the SST and a subsonic j e t  during an a r r iva l .  The ordinate of the bar 

graph represents number of operations p r io r  t o  touchdown, separated in to  

10-minute time intervals  as  shown. 

included i n  the workload analysis i s  displayed above the bar graph. 

time periods 30-to-20 and 20-to-10 minutes pr ior  t o  touchdown, the  SST workload, 

defined by the number of operations i n  a given period, i s  considerably higher 

A breakdown l i s t i n g  the  type of operations 

I n  the 
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than a subsonic j e t .  This i s  due t o  the greater a l t i t ude  range which the SST 

passes through i n  the same t i m e  period. For the t i m e  period 10 minutes pr ior  

t o  touchdown, the SST and the subsonic j e t  are operating a t  essent ia l ly  the  

same speed and over the same range, thus the  workload i s  comparable. 

a departure, the communication-navigation workload f o r  the  SST and a subsonic 

je t  was about the same. 

During 

P ic to r i a l  Display 

I n  figure 17, the advantages of using a p i c t o r i a l  display fo r  holding i n  

a strong wind are  shown. 

wind of 70 knots. 

was about a minute longer than a no-wind pattern because the p i lo t  f a i l e d  t o  

compensate for the e f fec t  of the  wind. The e f fec t  of the wind i s  a l so  evident 

i n  the i r regular i ty  of the pattern.  With the p i c t o r i a l  display, the p i l o t  w a s  

able t o  compensate f o r  t he  wind by adjusting the  time for  the  downward l eg  and 

was able t o  complete a more regularly shaped pattern.  

plet ing the pat tern without p i c to r i a l  display was about 2 minutes longer than 

a no-wind pattern,  while the t i m e  used for t he  pat tern with p i c t o r i a l  display 

was about the  same as a no-wind pattern.  

The holds were made a t  about 11,000 fee t  with a north 

Without t he  p i c t o r i a l  display, the f i r s t  leg of t h e  pat tern 

The time used i n  com- 

I n  f igure 18, the southerly p i c to r i a l  display departure routes through 

Coyle and t e s t  runs flown along them a re  shown. 

were a r b i t r a r i l y  spaced a t  a distance of 5 n. mi. apart .  

cu l ty  i n  the  i n i t i a l  alinement of the SST with the p i c t o r i a l  display routes 

because of t he  high performance of the  SST and the large heading change required 

after take-off,  

p i c t o r i a l  display routes were i n  the  order of 1-2 n. m i .  

A l l  p ic to r i a l  display routes 

There was some diffi- 

The deviations from course along the  s t ra ight  portions of the 

However, there  was an 
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increased d i f f icu l ty  i n  holding course i n  the turns,  especially a t  t he  higher 

speeds, with deviations of 3-4 n. m i .  experienced. 

I n  figure 19, the northerly p i c t o r i a l  display departure routes through 

Huguenot (HUO) and Sparta (SAX) and t e s t  runs flown along them a re  shown. 

before, the p i l o t s  experienced some d i f f i cu l ty  i n  a l ining the SST with the  

entrance t o  the p i c to r i a l  display routes. 

remaining on course through the  turns.  

with two of these runs could be labeled as gross blunders on the par t  of the 

p i lo t s .  

noted i n  figures 18 and 19 can be reduced by adjusting the  p i c t o r i a l  display 

route turn radii t o  match the SST's performance. 

A s  

A problem was again experienced i n  

The large deviations from course shown 

It i s  believed tha t  t h e  d i f f i cu l ty  i n  holding course i n  the turns  

It should be mentioned tha t  the deviations from course a re  the r e su l t  of 

p i lo t ing  error since the errors  associated with a navigational system were not 

represented i n  the inputs t o  the p i c t o r i a l  display. Thus, the deviations from 

course shown are  l e s s  than those tha t  would have occurred i n  actual  practice.  

The communication workload between the SST p i l o t s  and the a i r  t r a f f i c  con- 

t r o l l e r s  was reduced when the p i c t o r i a l  display was used since t h i s  eliminated 

the  need for radar vectors. 

control ler  communications could be effected by eliminating the requirement fo r  

clearances t o  climb when clear  of a l t i t ude  r e s t r i c t ed  areas. 

complete reliance on the p i c t o r i a l  display, there  would be a reduction i n  the 

navigation workload by eliminating the navigation frequency changes presently 

required i n  position checks a t  airway intersect ions and rad ia l s  defining a l t i -  

tude restr ic t ions.  

It was apparent t h a t  a fur ther  reduction i n  p i lo t -  

I n  addition, with 
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CONCLUDING REMARKS 

I n  the i n i t i a l  simulation studies of the operating problems of two SST 

design configurations (variable-sweep and fixed-delta wing), the following 

resu l t s  have been indicated fo r  terminal area operation i n  the present a i r  

t r a f f i c  control system: 

$ \ A  reduction i n  a l t i t ude  e r rors  i n  following the sonic boom boundary of the 

climb prof i le ,  a s  w e l l  a s  a reduction i n  the p i l o t ' s  t ask  was accomplished by 

the use of a flight director  programed f o r  ve r t i ca l  f l ight-path control. 

Overshooting a t  airway intersections while turning a t  supersonic speeds was 

prevented by using lead distance information which enabled the p i l o t s  t o  

i n i t i a t e  lead-type turns p r io r  t o  the airway intersection. 

,Maneuver time and f u e l  fo r  climbouts of the SST a re  consistently greater 

than tha t  provided f o r  i n  the SST design allowance, as determined from opera- 

t ions  i n  the present-day New York a i r  t r a f f i c  control system. Provisions f o r  

unrestr ic ted climbout routes fo r  the SST would a l l ev ia t e  t h i s  s i tuat ion.  

For ear ly  portions of the descent, the SST communication-navigation work- 

load was found t o  be considerably higher than tha t  f o r  a subsonic jet. 

A preliminary study of t e s t s  involving the use of a p i c to r i a l  navigation -- 
display indicated t h a t  the  p i l o t s  could f ly  specified p i c t o r i a l  display routes, 

with deviations from course of 1-4 n. m i .  

turns  and probably could be reduced by adjusting the  p i c t o r i a l  display route 

The larger  deviations occurred i n  the 
d 

tu rn  r a d i i  t o  match the  SST's performance. The p i c t o r i a l  display was found t o  

be advantageous i n  performing holding pattern maneuvers i n  wind conditions, 

enabling the  p i l o t  t o  fly a smaller, more regularly shaped pattern,  and t o  com- 

p l e t e  t he  pa t te rn  with l e s s  deviation from the expected pat tern time. Use of 
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the pictorial display resulted in a reduction in the communication workload for 

the SST pilots, and it appears that a more complete reliance on the pictorial 

display than was used in these tests would further reduce communications and 

also reduce the navigational workload. 

1. Sawyer, Richard H.: A Simulator Study of Airspace Requirements for the 

Supersonic Transport. NASA TN D-1964, 1963. 

2. Maglieri, Domenic J.; and Lansing, Donald L.: Sonic Booms From Aircraft 

in Maneuvers. NASA TN D-2370, 1964. 
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